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Abstract: Males of many bumblebee species exhibit a con-
spicuous pre-mating behavior with two distinct behav-
ioral components: scent marking and patrol flying. The 
marking pheromone is produced by the cephalic part of 
the labial gland (CLG). As far as is known, the CLG secre-
tion is species specific, and it usually consists of two types 
of compounds: (i) straight-chain aliphatic alcohols, alde-
hydes or esters, and (ii) acyclic mono-, sesqui- and dit-
erpenes (alcohols or acetates). Here, we summarize data 
from the literature reporting chemical composition of the 
CLG secretions of more than 80 bumblebee species. Simi-
larities and differences within and between subgenera 
are discussed in the context of biosynthetic pathways and 
evolution.

Keywords: Bombus; bumblebee males; chemical composi-
tion; marking pheromone; sex communication.

1   Introduction to bumblebees
Organization and communication in social bees have 
interested researchers for a long time. The most studied 
among them is the domesticated Western honeybee, 
Apis mellifera. However, less is known about the primi-
tive eusocial species (i.e. species having a solitary phase 
in their life cycle), such as bumblebees, but in the last 

two decades, the attention of scientists turned toward 
this group. Many scientists worldwide study the biology, 
social organization, chemical communication, genet-
ics and evolution of the bumblebee species. Thus, our 
knowledge on all aspects of the bumblebee life increased 
substantially. All bumblebees are included in the tribe 
Bombini [1]. This tribe forms a monophyletic group of over 
extant 250 species and a few fossil ones [2, 3]. A system 
of subgenera has been widely used for nearly a century 
to communicate ideas of relationships among bumblebee 
species. However, with 38 subgenera, the system was too 
complicated. Therefore, using a new strongly supported 
estimate of phylogeny for almost all bumblebee species, 
the subgeneric system has been reduced to 15 subgenera 
[4]. At the species level, the tribe Bombini is a taxonomi-
cally confused group. Indeed, the morphological homoge-
neity encountered in bumblebees remains an important 
obstacle to their identification. In addition, the difficulty 
is accentuated in the case of cryptic species [5, 6], regional 
chromatic convergences [7–9] or high intraspecific vari-
ability [10].

Bumblebees are large organisms compared to most 
other species of bees [11]. These endothermic animals 
are covered with a thick and dense plumose fur, which in 
addition to capture pollen, allows them to be extremely 
well adapted to cold regions [12]. They are present on all 
continents except Antarctica, Oceania and sub-Saharan 
Africa [2] (Figure 1). However, some parts of the globe, 
such as New Zealand and Tasmania, have been invaded by 
Bombus terrestris, a species raised and marketed around 
the world [13].

Bumblebees are haplo-diploid animals, where males 
(haploids) and queens (diploids) provide the reproductive 
role and where workers (diploids) maintain the colony in 
the free-living species [12, 14, 15]. An overwintering queen 
starts alone the establishment of the nest. She forages 
on the pollen and nectar to provide resources to the first 
batch of larvae. At the beginning of the colony cycle, the 
queen exercises control over all the workers in terms of 
inhibition of the development of their ovaries [16]. Many 
attempts were done to find the source and structure of 
the queen pheromone in bumblebees, e.g. [17, 18]. The 
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mandibular gland was long considered a source of inhib-
iting signal, but a reinvestigation by Bloch and Hefetz [19] 
has not confirmed the role of any queen’s gland in ovary 
inhibition of workers. The behavior of the queen seems to 
be crucial at this point [20, 21]. Although n-pentacosane 
was reported as a putative queen pheromone in B. ter-
restris and claimed a conserved signal in bumblebees [22], 
later studies did not prove the effect of neither this com-
pound nor the body extracts in Bombus impatiens [23–25].

After the so-called “switch-point” at the time of the 
colony’s sexual maturation [26–28], new queens and 
males emerge and leave the colony. The males perform 
their courtship display and mate with the virgin queens. 
In the non-tropical areas, the freshly fertilized queens dig 
and insulate themselves in a hibernaculum for overwin-
tering until the following spring.

The success of social insects largely comes from their 
ability to accumulate and store large amounts of food 
resources through a very elaborate division of labor. This 
considerable energy cost has favored the evolution of par-
asitic species, which aim to divert this joint effort in their 
own interest [29]. They exploit their hosts for the rearing 
of their offspring and, thus, use most of their energy for 
reproduction [30]. Within bumblebees, some species 
evolved into nest social parasites called cuckoo bumble-
bees (or inquilines). With the aim of usurping their guests, 
these social parasites have adapted physiologically (no 
worker castes, important number of ovarioles and atro-
phied wax gland) and morphologically (lack of pollen 
baskets, larger mandibles, fusion of the intersegment 

membranes, a sting connected to more powerful muscles 
and a larger venom gland) [15, 31–36]. Moreover, they have 
also managed to overcome the sophisticated recognition 
systems of their hosts (pheromones and specific cuticular 
hydrocarbon signatures) [32, 37–39].

2   Pre-mating behavior of 
bumblebees, chemical 
communication and  
pheromones

The encounter between sexual partners is essential in 
animal reproduction. This encounter and the choice of 
sexual partners are achieved through a courtship behav-
ior that involves one or more reproductive traits such as 
secreting semiochemicals [40, 41]. In bumblebees, these 
secretions are the main signal for pre-copulatory recogni-
tion [9, 42]. It is not common to observe mating of bum-
blebees in the field. However, the pre-copulatory behavior 
of males is easily observable, and many studies have 
shown distinct strategies including (i) scent marking, 
(ii) patrol flying and (iii) nest entrance awaiting [43]. The 
eco- climatic conditions in which the different species live 
could explain why one strategy dominates over another. 
Patrolling behavior is the far most common pre-mating 
strategy among bumblebee species including cuckoo 
bumblebees. Males establish flight paths in which they 

Figure 1: Original distribution of the Bombus genus around the world (yellow). In red, the regions where B. terrestris was imported (from 
Williams [2]).
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mark leaves, branches or stones with their cephalic labial 
gland (CLG) secretions to attract virgin queens. The spatial 
location of secretions is species specific [44–49]. Males 
mark their spots in the morning and during the day; they 
fly from one spot to another and inspect the scent marks.

Perching behavior is less common in bumblebees. This 
territorial strategy is represented by males waiting at prom-
inent objects (perches) in order to see and approach virgin 
queens [8]. Species that have adopted this strategy have 
typically very large eyes [50]. This morphological adapta-
tion does not seem to enable them to distinguish a bumble-
bee queen from other flying insects [15]. This strategy has 
been described in several species of subgenera Bombias, 
Cullumanobombus and Mendacibombus. Beside the optical 
orientation of males, males use a pheromone, too. They 
mark their perches (usually 1–3, average: 3.7 per male) [51] 
with the CLG secretion to increase the efficiency of pre- 
mating strategy and the probability of encountering a con-
specific female. The marking is done in the morning and 
later in the day; males sit on their marked perches and dart 
at all passing objects [51]. The composition of the CLG secre-
tion has been described in several perching species and the 
exclusive optical orientation of males has been disproved.

The third type of pre-mating behavior has been 
described for males awaiting emerging gynes right at a 
nest entrance. This strategy was reported for some Thora-
cobombus and Subterraneobombus species, occurring 
in Europe or North America. In late mornings or early 

afternoons, males sit on the ground and survey the nest. 
As soon as a virgin queen comes out of the nest, males 
fight with each other and some may even chase the 
queen inside the nest to mate [15]. Aggressive interac-
tions between males have been observed [52]. Recently, a 
study of genetic divergences (microsatellites) has shown 
that males around nests came from other colonies [53]. 
In species using this pre-mating strategy, scent marking 
has not been observed. However, the males’ labial gland 
produces a secretion in a concentration comparable with 
patrolling species, and its components resemble those 
present commonly in CLG secretions [51, 54]. The role of 
the secretion in this strategy has not been explained yet.

Numerous studies have demonstrated the significant 
role of chemical signals in intra- and interspecific com-
munication in bumblebees, both inside and outside the 
colony [55]. All three pre-mating behavioral strategies 
described above are related to CLG secretion. The secre-
tion plays a role in sexual attraction and species isolation. 
It functions as a territorial marking pheromone as well as 
the male sex pheromone. The pheromone-marked places 
attract conspecific females for mating [56]. The marking 
pheromone functions both as an attractant and an 
arrestant for females and, moreover, as a short-term aph-
rodisiac for males themselves [45]. This pheromone is pro-
duced by a paired acinar gland in the head, the cephalic 
part of the labial gland [57–59]. The glands occupy more 
than half of the volume of the head (Figure 2A and B). It 

Figure 2: (A) Drawing of a B. lapidarius’ (Melanobombus subgenus) head from the front view. The cuticle and the eye on the left side were 
removed to reveal the CLG and the mandibular gland (MG). The bursa (B), which receives in particular the secretions of the CLG, as well as 
the terminal excretory duct (TEC) are visible. (B) Cut in the acini that makes up the CLG. Acini light (L) and secretory vesicles (V) are shown 
(from Ågren et al. [58] and Terzo et al. [60]).
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is secreted at the base of mandibles through an excretory 
duct [58, 60, 61].

Despite many papers describing the chemical com-
position of the male CLG secretion, there are only a few 
reports proving the behavioral role in a bioassay. It has 
been shown that males deposit the CLG secretion on the 
vegetation or other prominent objects [51, 56, 59]. In a 
dual-choice test, Bergman showed that virgin B. terrestris 
queens were able to distinguish between the scent emitted 
by conspecific and heterospecific males. Lecocq et al. [62] 
showed that virgin queens were more attracted to CLG 
secretions of the same subspecies (B. terrestris dalmatinus) 
than to other B. terrestris subspecies. The attractiveness 
of males for virgin females changes with the males’ age. 
Among the individuals 1–30 days old, the 10-day-old males 
of B. terrestris were the most attractive in bioassays [63]. It 
is still unclear whether the attraction is based on one or 
several secretion components, or whether the mixture of 
compounds in specific proportions is the cue for queens. 
Different volatiles were tested for electroantennographic 
detection (EAD) responses of queens’, males’ and workers’ 
antennae. The antennae of workers and males responded 
equally, while the queens’ antennae showed selectivity 
in perception [64]. Later, active components of the CLG 
secretion were found by means of gas chromatography 
(GC)/EAD in B. terrestris and Bombus lucorum [61, 65]. The 
queens’ antennae responded to the most volatile fraction 
of the secretion represented by main and medium-abun-
dant components. The role of less- volatile components in 
communication has not been clarified.

Very little is known about the chemical signals of 
young females showing their receptivity for mating. 
Vanhonk et al. [66] reported that the mandibular secretion 
of young virgin queens contains a sex pheromone that 
induces mating behavior of conspecific males. The com-
position of secretions of three different glands of virgin 
females of five bumblebee species has been published [67], 
however, without evidence of biological effect of the iden-
tified components. More details for B. terrestris were given 
by Krieger et  al. [68], who identified several antennally 
and behaviorally active components of the body surface 
and cephalic extract of virgin queens. The active com-
pounds were fatty acids and their esters. Geranylgeraniol 
was the only isoprenoid showing some activity. 3-Oxo- 
and 3-hydroxydecanoic acids were present in both body 
and cephalic extracts [68]. (S)-3-hydroxydecanoic acid 
was later found in the mandibular gland of B. terrestris 
queens as one of the medium-abundant components [69]. 
Its amount in the secretion changes substantially with 
the age of queens (as opposed to octadec-9-enoic acid, 
the main component of the mandibular gland secretion), 

reaching a maximum between 5- and 8-day-old queens 
[69]. Hydroxy- and oxo-acids may, thus, be candidates for 
further studies on female sex pheromone in bumblebees. 
According to Krieger et  al. [68], testing a mixture of the 
EAG active compounds in the corresponding concentra-
tion did not reach a full effect on males as living queens. 
Thus, there might also be other cues necessary to stimu-
late males for mating, such as visual cues.

3   Intraspecific variability of CLG 
secretions

Several studies highlighted the intraspecific variability of 
CLG secretions in bumblebees. These studies have focused 
on the temporal variation of these secretions during the 
life span of bumblebees [58, 65, 70]. Ågren and co-workers 
[58] were the first to show variations in the concentration 
of CLG during the life of some species such as Bombus 
(Melanobombus) lapidarius, Bombus (Pyrobombus) hyp-
norum and Bombus (Megabombus) hortorum. The CLG 
concentration increases up to the fourth day of the male’s 
life. Forty years later, Žáček and co-workers [65] were able 
to demonstrate that the concentration of secretion reaches 
its maximum 7 days after the emergence of individuals. In 
B. (Bombus) terrestris, after these 7  days, the concentra-
tion decreases very quickly, while it remains fairly stable in 
B. (Bombus) lucorum [65]. These differences were explained 
by the apoptosis of the secretory cells of the CLGs of males 
[61]. The cell death begins on the fifth day in B. terrestris, 
whereas in B. lucorum, the secretory cells remain func-
tional throughout life [65]. The explanation might be in 
the type of pheromonal components, among which some 
compounds such as isoprenoids at high concentration 
may activate the apoptosis of the secretory cells. This was 
earlier shown for farnesol, which induces cell apoptosis in 
different organisms including humans [71–74].

Šobotník and co-workers [61] measured responses 
of queens to CLG secretions of males of different ages by 
electroantennography recordings. Although each secre-
tion elicited a response, maximal sensitivity was observed 
for extracts of glands 2–10 days old. Older gland extracts 
gradually lose their effectiveness. Coppée and co-workers 
[63] confirmed the attractiveness in B. terrestris females in 
bioassays. Virgin queens were significantly more attracted 
to gland extracts of 7-day-old males than to younger or 
older ones. Although some authors [75, 76] considered 
male CLG secretions to be invariable between individu-
als of the same species, local intraspecific differentiations 
have been observed by other authors among widespread 
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species such as Bombus (Thoracobombus) ruderarius [77], 
Bombus (Pyrobombus) monticola [78], Bombus (Thoraco-
bombus) pascuorum [10] and B. (Bombus) terrestris [70]. 
In B. ruderarius, the CLG secretion was compared for two 
earlier distinguished subspecies, B. ruderarius ruderarius 
and B. ruderarius montanus. These subspecies differ sub-
stantially in coloration, but the composition in the CLG 
secretion is not significantly different [77]. Thus, the two 
subspecies occurring in the Pyrenees are recommended to 
be regarded as forms of a single population rather than 
subspecies [77]. Similarly for B. pascuorum, in which 
24  subspecies were reported earlier, the taxonomy was 
simplified to four subspecies groups based on genetic dif-
ferentiation, color pattern, geographic distribution and 
analysis of CLG secretions [10]. On the other hand, a revi-
sion of the B. monticola complex (occurring in the South 
European mountains and in the Arctic regions) led to its 
separation into three species, Bombus conradini, occur-
ring in the Central Apennine mountains, five subspecies 
of B. monticola distributed in the North Apennine moun-
tains, and Bombus lapponicus in the Arctic regions. In B. 
terrestris, six subspecies were compared, including those 
isolated geographically (e.g. B. terrestris canariensis) [70]. 
Some subspecies could not be distinguished based on the 
CLG secretion (B. terrestris terrestris and B. terrestris lusi-
tanicus). The different chemical composition was directly 
connected to different attractiveness of the CLG extracts 
for queens [62]. Virgin queens preferred extracts from 
males of the same subspecies [62].

4   Chemical composition of male 
marking secretions: interspecific 
differences

The chemical nature of the males’ marking pheromones 
has been studied extensively. The research in this field 
started in Scandinavia [44, 75, 79], and it was followed 
by many studies of the Middle and West European bum-
blebee species later [77, 80–85]. Recently, reports on CLG 
secretion of the South and Central American bumblebees 
[86, 87] as well as of the Japanese species [88, 89] were 
published. At present, the pheromones of more than 80 
bumblebee species are known (i.e. 30% of the described 
species) [9, 55, 85–87, 90–92] (Table 1 and the Supplemen-
tary Table S1).

As far as is known, each bumblebee species produces 
a specific blend of compounds (reviews [55, 90, 120, 121]). 
Bergström and co-workers also studied the temporal 

and spatial segregation between species and subspecies 
[93, 110]. Except for the geographical isolation, species 
patrolling in the same area segregate to some extent in 
time and space. Species occurring in the same time and 
habitat differ substantially in the composition of their 
marking pheromone to avoid interspecies mating. These 
differences were also used for chemotaxonomical pur-
poses [122]. There is still no report in the literature on the 
identical composition of the CLG secretions in two differ-
ent species. Interspecific differentiation is always more 
important than intraspecific variability.

The gland secretion contains mostly two types of 
compounds: (i) straight-chain saturated and unsaturated 
aliphatic alcohols, aldehydes, esters, rarely hydrocar-
bons with the chain length C12–C18, and (ii) acyclic mono-, 
sesqui- and diterpenes (alcohols, aldehydes or acetates). 
The secretions usually contain few main components 
and a number of lower-abundant or minor components. 
Beside the main components usually present in milli-
gram quantities per gland of an adult male, unbranched 
alkanes and alkenes occur in the secretion forming 
6%–15% of the mixture, exceptionally in higher propor-
tions. These hydrocarbons are not species specific (odd-
numbered chains C23 or C25 usually prevail with double 
bonds of alkenes located in position 7 or 9), and they are 
suspected not to play a role in the communication. When 
antennal responses of virgin queens to the secretion com-
ponents were tested, no activity has been found for these 
alkanes/alkenes [61, 65]. Older males have a higher pro-
portion of hydrocarbons and a lower proportion of anten-
nally active compounds that are anticipated to function as 
pheromonal components [63].

The main compounds found in the CLG secretions of 
known bumblebee species are summarized in Table 1. Only 
those forming a main component in at least one individual 
of the taxon are listed. Unfortunately, the older literature 
does not mention numeric values for the concentration of 
individual compounds. To overcome the diversity in pre-
senting data in the literature, the amounts in Table 1 are 
marked as “xxx” (relative amount >30%), “xx” (relative 
amount between 10% and 30%) and “x” (relative amount 
<10%). A detailed table with all described compounds and 
original values (either numeric or just semi-quantitative 
data) is available as Supplementary data (Table S1). Only 
components higher than 1% are included in this Supple-
mentary file.

Among the CLG secretion main components, the ali-
phatic compounds prevail. Octadecen-1-ol is the most 
common, present in 33  species in substantial quantity. 
The double bonds are located in position 9 or 11; no other 
position has been found in octadecenol. The second most 
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common component (in 23  species) is hexadecen-1-ol 
with double bond position 7 or 9, rarely 11. Icosen-1-ol is 
common, too, with double bond position 11 or 15. From 
saturated alcohols, hexadecane-1-ol is the most common, 
but it usually forms a medium or a minor component only. 
Other saturated alcohols are rather rare or present in very 
low proportions.

Unlike in alcohols, hexadecenal is by far most 
common aldehyde in CLG secretions. Similarly to hexade-
cenol, the double bond position is usually 7 or 9, in some 
species also 11. Octadecenal is present in seven species, 
with the double bonds located in position 9 or 11. In one 
species only, Bombus wurflenii, ketones have been found. 
Heptadecan-2-one and a small amount of pentadecan-
2-one are the two main components of this species. B. wur-
flenii is the only species yet analyzed from the subgenus 
Alpigenobombus. Thus, there is no comparison, so far, for 
the presence of ketones in the CLG secretion of consubge-
neric-related species.

Among esters in the CLG extracts, acetates of ali-
phatic alcohols and ethyl esters of fatty acids occur most 
frequently. Tetradecyl acetate and the more frequent 
hexadecenyl acetate are produced by many species. Also, 
octadecenyl acetate is rather common. The double bond 
position in hexadecenyl acetate is mostly 9 (exception-
ally 7), and in octadecenyl acetate it is 9 or 11. The regioi-
somers are thus the same as in alcohols and aldehydes. 
Ethyl esters of many fatty acids occur in the secretions, 
but only two of them form main components: ethyl dode-
canoate and ethyl tetradecenoate. Ethyl dodecanoate is 
practically exclusively present in species belonging to the 
subgenus Bombus sensu stricto, where it is a “diagnostic” 
or subgenus-specific component shared by all species. 
Tetradecenyl acetate, with the double bond exclusively in 
position 9, occurs in the subgenera Bombus sensu stricto 
and Psithyrus.

An interesting subgenus from the chemical point of 
view is Megabombus. Analyses of pheromones of four 
species were published (Table 1). Three of them produce 
nonadec-9-ene as the main component. We have analyzed 
CLG samples of three more Megabombus species (Bombus 
argillaceus, Bombus gerstaeckeri and Bombus portchinsky) 
and found the same main component (Rasmont, Terzo and 
Valterová, unpublished results). The only species without 
nonadecene published so far in this subgenus is Bombus 
diversus. As was mentioned above, hydrocarbons are 
usually not considered active pheromonal components. 
However, in this subgenus, the amount of nonadecene 
in the labial gland secretions is high and corresponds to 
usual concentrations of the main components in other 
bumblebee species. Therefore, nonadec-9-ene might play 

an important role in the courtship behavior inside this 
subgenus.

As for isoprenoids, sesqui- and diterpenes usually 
dominate the CLG secretion. Citronellol was the only 
monoterpene found, and only four species produced it 
in a detectable amount. These species belong to different 
subgenera (Pyrobombus, Alpinobombus and Psithyrus). 
The low occurrence of monoterpenes might be connected 
to their higher volatility, which does not suit well to the 
marking purposes. Marks are usually deposited in the 
morning and checked by males during the day, but they 
are not renewed until the next morning [51]. Therefore, 
less volatile compounds stay on the marks longer and 
might be advantageous for the marking strategy.

Diterpenic alcohols and their acetates are much 
more common than mono- or sesquiterpenes among 
isoprenoids. Geranylgeraniol occurs in 20  species, and 
so does its acetate. Geranylcitronellol is produced by 
males of 13  species, and the sesquiterpene 2,3-dihydro-
farnesol in 9  species. It is interesting that citronellol, 
 2,3-dihydrofarnesol [123] and the corresponding aldehyde 
2,3-dihydrofarnesal occur in the CLG secretions exclu-
sively as almost pure 3S-isomers (enantiomeric purity 
>98% S). Samples of the seven species underwent enan-
tioselective GC, and only traces of 3R-enantiomers were 
detected [113]. Unfortunately, the enantiomeric pairs of 
diterpenes did not separate on the chiral column; thus, 
their absolute configuration could not be determined.

When looking at the occurrence of specific phe-
romonal components within subgenera, we can see a 
similar composition in some, but a high variability in 
other subgenera (Table 1). Thus, geranylgeranyl acetate is 
the main component in all Cullumanobombus and Sibiri-
cobombus subgenera, Thoracobombus and  Alpinobombus 
are characterized by octadecenol and hexadecenol; 
however, different double bond positions are present 
in these alcohols in single species. With one exception 
(Bombus pensylvanicus), no isoprenoids were found in 
the subgenus Thoracobombus. Species of the subgenera 
Bombias, Cullumanobombus, Kallobombus, Pyrobombus, 
Megabombus, Melanobombus, Sibiricobombus and Sub-
terraneobombus use no aliphatic aldehydes for commu-
nication. No esters occur among the main components 
in subgenera Megabombus, Sibiricobombus, Subterrane-
obombus and Kallobombus (Table 1). Species of the sub-
genus Psithyrus usually produce more than one main/
medium component; the CLG secretion is more complex 
than that in other subgenera. In Bombus sensu stricto, a 
“diagnostic” ( subgenus-specific) component of the CLG 
secretion is ethyl dodecanoate, present in all species 
studied so far (except for the Japanese Bombus ignitus 
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and the Corsican Bombus xanthopus). This compound 
dominates in some Bombus sensu stricto species, while 
in others, it is a medium or minor component; additional 
compound(s) distinguish the species. It seems that closely 
related species belonging to one subgenus share the same 
enzymes for producing one subgenus-specific compo-
nent, and the species that are not separated geographi-
cally or otherwise evolved new enzymes and pathways for 
producing additional pheromonal component(s).

A very particular structure and chemistry of CLGs 
were found in a small monophyletic group (formerly Rho-
dobombus) of the Thoracobombus subgenus. By compar-
ing CLGs of four species belonging to this group with those 
of a well-known species (i.e. B. terrestris), it was found 
that CLG secretions of these four species were unusual 
and proportionally reduced [60, 85, 124]. The CLG extracts 
contain mainly hydrocarbons, which are also found on the 
cuticle [85]. No volatile compounds commonly identified 
in other species are present in this group [55]. Histologi-
cal studies have revealed that the CLGs of these species 
are atrophied and probably non-functional. In addition, 
morphological structures such as barbae mandibula-
ris, needed for depositing secretions on the substrate, 
are absent in these species [51, 60]. Thus, males of these 
species certainly do not use their CLG to attract conspe-
cific females at a distance.

The three basic pre-mating strategies used by bum-
blebee males are not clearly correlated with the structure 
of the pheromonal components. While the patrolling 
behavior is far most common in bumblebees, the number 
of species whose males perch or wait at the nest entrance 
is low. No cuckoo bumblebee species has been reported 
to use any other strategy than patrolling. The perching 
behavior was described for 11  species of the subgenera 
Bombias (3  species), Mendacibombus (3  species), Cullu-
manobombus (2 species), Sibiricobombus (1 species), Mel-
anobombus (1  species) and Alpigenobombus (1  species) 
[55, 56]. Within other subgenera, no perching species 
has been reported. The nest waiting strategy has been 
observed for six species of the genera Thoracobombus 
(five species) and Subterraneobombus (one species) [56, 
125]. Since these species are not frequent and only a few 
were reported from the chemical point of view compared 
to the number of patrolling species, it is not possible to see 
any chemical pattern that would be connected to certain 
behavioral strategy. Brasero and co-workers [92] came 
with a hypothesis that patrolling species often use more 
volatile pheromonal components (C16 derivatives), while 
nest waiting species produce less volatile components (C18 
derivatives). This was, however, observed in the Thora-
cobombus subgenus only, but it cannot be generalized 

or simply extended to other subgenera. A similarity in 
pheromonal components can be seen in related species 
belonging to certain subgenera (see above), but there is no 
obvious correlation between the behavioral strategy and 
chemical composition of the CLG secretion.

5   Biosynthesis of the male marking 
pheromone components

Based on analysis of compound patterns isolated from 22 
bumblebee species, Lanne and co-workers suggested that 
CLG compounds are produced from saturated fatty acids 
by the action of specific glandular desaturases [94]. This 
hypothesis was, however, formulated without any experi-
mental evidence. Later, experiments with 2H-, 13C- and 
14C-labeled acetate and fatty acids applied in vitro and in 
vivo were done [126–128]. The model species was mainly 
B. terrestris, species that can be reared in the laboratory, 
and thus, material of defined age and physiological state 
can be obtained for experiments. The in vitro experiments 
proved the formation of both aliphatic and isoprenoid 
pheromonal components in the CLG [127]. The interpreta-
tion of in vivo applications was, however, not unambigu-
ous. There exist two hypotheses on the biosynthesis of 
aliphatic pheromonal components: (i) de novo formation 
in the labial gland from acetate units, or (ii) by modifica-
tion of fatty acids stored in the fat body after their hemo-
lymph transport to the CLG. A mass balance of labeled 
compounds in feeding experiments supported the trans-
port hypothesis [128]. Thus, the biosynthetic system of the 
marking pheromone in bumblebee males seems to be very 
flexible, and the particular active pathway is likely to be 
controlled by regulatory mechanisms or to depend on the 
availability of particular substrates.

A transcriptomic approach was used for clarifica-
tion of the biosynthetic pathways leading to pheromonal 
components [129]. Next-generation sequencing and 
quantitative real-time polymerase chain reaction were 
used to identify and quantify transcript abundances 
of genes from the isoprenoid biosynthetic pathway in 
B.   terrestris and B.  lucorum. Genes coding the whole set 
of enzymes needed for isoprenoid synthesis were present 
in the CLG of both B. terrestris and B. lucorum males, but 
their expressions differed dramatically. This explains 
the difference in the pheromone composition. While in 
B.   terrestris,  2,3-dihydrofarnesol is the main component, 
B. lucorum CLG does not contain any isoprenoids. The 
expression results, thus, indicate that the biosynthesis of 
isoprenoids is regulated at the transcriptional level [130]. 
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To  generalize, the transcriptional regulation might be 
the reason why closely related bumblebee species often 
differ in the main components of the male marking phero-
mones, and this process might be involved in speciation.

6   Integrated taxonomy of 
bumblebees

Closely related species are often difficult to distinguish 
using morphological traits. In bumblebees, some species 
complexes are especially challenging (e.g. B. lucorum 
complex) [131]. There have been many attempts to clarify 
bumblebee taxonomy by using alternative features such as 
wing shape, DNA or eco-chemical traits [9]. Recent studies 
have used a multisource approach to gather different lines 
of evidence in order to draw a strongly supported taxo-
nomic hypothesis in bumblebee species status. Yet, the 
resulting taxonomic status is not independent of selected 
evidence and of consensus methodology. Lecocq and 
co-workers [132] developed integrated methods includ-
ing geometric morphometry of wing shape, definition of 
private haplotypes, sequence-based (nuclear/mitochon-
drial) species delimitation methods (e.g. bGMYC) and 
diagnostic composition of the CLG secretions. The useful-
ness of this method has been shown on several taxa such 
as Bombus barbutellus [119], B. lapidarius group [104], 
B. monticola [78, 133], B. pascuorum [10], B. terrestris [134] 
and the subgenus Alpinobombus [115], in which the tax-
onomy of species and subspecies has been clarified. Thus, 
the chemical composition of male CLG secretions is of a 
great help to taxonomists and forms an irreplaceable part 
of the method of integrated taxonomy of bumblebees.

7   Phylogenetic consideration: does 
CLG chemistry meet phylogeny?

Data based on CLG secretions associated with a well-
resolved phylogeny offer a possibility to study the evolu-
tion and the diversification of these compounds. However, 
as already shown in other insects such as beetles [135], 
unpublished and preliminary results suggest that there is 
no clear phylogenetic pattern in bumblebee pheromones, 
taking into account only main components. Although 
some types of compounds are diagnostic for some sub-
genera (i.e. acetates in Cullumanobombus), all these com-
pounds are also found in other subgenera. While some 
characteristic phylogenetic patterns can be found in 

several subgenera so far studied, it does not seem to reflect 
wider relationships. Besides, if the eco-climatic constraint 
of the environment, which could interact with compounds 
deposited by bumblebee males, plays a role in the com-
position or the detection of the CLG secretions, additional 
character mapping analyses of these reproductive traits 
would enable us to detect any evolutionary convergences 
in similar eco-climatic regions (biomes). It is particularly 
interesting because bumblebees live in most of the biomes 
defined in our planet. The effect of eco-climatic condi-
tions has been demonstrated in traits directly associated 
with reproduction in Lepidoptera [136] and also in birds 
[137, 138]. Several studies are in progress to explore these 
hypotheses in bumblebees.

According to the latest phylogenetic study based 
on transcriptomic analyses, bumblebees (Bombini) are 
closest to stingless bees (Meliponini) [139]. Males of sting-
less bees are known to aggregate around the nest entrance 
of conspecific colonies, but no other similarity with bum-
blebees in behavior or in chemical communication has 
been reported. Meliponini drones are not known to release 
any pheromone attractive for conspecific gynes [140].

8   Comparison of bumblebee 
pre-mating system with other 
Hymenoptera

The pre-mating behavior of bumblebee males is not 
unique in insects; it occurs in other Hymenoptera too. 
Males of the solitary bee Colletes cunicularius wait at 
the nest entrance to mate the emerging females immedi-
ately. In their mandibular gland, both males and females 
produce (+)-S-linalool, which was shown to be a mate 
attractant [141]. Males of several Andrena bees patrol 
areas marked with secretions of their mandibular gland. 
A broad spectrum of terpenes was identified in different 
Andrena species. Andrena wilkella produces a specific 
compound, 2,8-dimethyl-l,7-dioxaspiro[5.5]undecane, 
that was proved to be of high enantiomeric purity, having 
(2S,6R,8S) configuration [142]. Male territorial marking 
has been also described for other solitary bees (genus 
Centris, monoterpenic alcohols as marking pheromones) 
[143] and carpenter bees (genus Xylocopa, straight-chain 
hydrocarbons and fatty acid esters used as marking pher-
omone, and also, e.g. sesqui- and diterpenic alcohols and 
aldehydes in Xylocopa varipuncta mesosomal gland) [144].

The digging wasps and bee wolves mark their ter-
ritories too. Males of several species of decorator wasps 
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(genus Eucerceris) display abdomen-dragging behavior on 
plants surrounding their nest [145]. The source of marking 
signal is the mandibular gland, from which the secretion 
spreads to the brush of hairs present on the clypeus and 
from there is passed onto hairs arranged along the ventral 
part of the abdomen. The main secretion component is 
(Z)-3-hexenyl 3-hydroxybutanoate. Males gather at certain 
spots to compete for females, which can be characterized 
as lek behavior. The male beewolfs, solitary hunting wasps 
(genus Philanthus) use their postpharyngeal gland for ter-
ritorial marking [146]. The gland has different functions 
in males and females, and it also differs in the secretion 
composition, however mostly on the quantitative level.

Males of the stenograstrine wasps, the most primitive 
among the social wasps, perform rapid flights, stopping 
on perches where they exhibit special behavior indicat-
ing a mark deposited from their abdominal part [147]. 
The chemistry has not been studied for these insects. In 
the social wasp Ropalidia marginata, it was believed that 
cuticular hydrocarbons were involved in sex communica-
tion, but the bioassay has not proved this hypothesis [148]. 
This species does not seem to use any long-distance mate 
attraction cues. On the other hand, in the paper wasps 
of the genus Polistes, the existence of the male marking 
pheromone has been proved in bioassays, but the chemi-
cal nature has not been reported [149, 150].

To summarize, one can say that despite a relatively 
conserved mating tactics in different Hymenoptera fami-
lies, where male territorial marking is most common, the 
diversity of glands used by males for marking is broad as 
well as the chemodiversity of the marking/sex signals.

9   Remarks to the significance 
of the research

The conservation of native plant communities, as well as 
of the wider biodiversity, is dependent on pollinators that 
are currently under threat and often declining. Recent 
research has focused on losses in managed honeybee 
colonies and on declines in wild pollinators. Among other 
factors, the chemodiversity of male marking pheromones 
ensures the separation of bumblebee species, and thus, it 
helps the monitoring of biodiversity. It is important to care 
for healthy and diverse pollinator communities and for 
the biodiversity of natural species at their natural area of 
distribution. Furthermore, the similarities/differences in 
the CLG secretions may also be an inspiration for further 
research on the evolution of biosynthetic pathways and 
enzymes participating in the formation of pheromonal 

components. Specific insect enzymes with unique prop-
erties have great biotechnological potential, as shown by 
Tupec and co-workers [151].
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